\qquad
Date: \qquad Core: \qquad

Guided Notes- The Periodic Table

The periodic table of.....

- Elements!
- An element is a substance made of \qquad this means it \qquad be broken down into more substances (think prime number in math)

Mendeleev

- Dimitri Mindeleev was one of the first scientists to notice that some elements seemed to \qquad
- In 1869 Mendeleev created the first periodic table with the
\qquad we had discovered at the time
- Mendeleev said properties of unknown elements could be
\qquad based on the properties of elements
\qquad in the periodic table

Our Modern Periodic Table

- The periodic table is an \qquad that arranges all the elements we have created or discovered by \qquad and \qquad
- Each element has its own one or two letter symbol based on its English or Latin name (the first letter is always capitalized)
- The table is designed to show patterns in the properties of elements

Looking at individual elements

- Atomic Number- \# of \qquad in ONE atom of an element, same as \# of \qquad if atom is
- Atomic Mass - The mass of \qquad of the element.
- Symbol- \qquad the element
\qquad
\qquad Core: \qquad

Atomic Mass and Number

- Atomic Number- the number of \qquad (+), will also equal the number of \qquad $(-)$ in a

atom.

- This is true because in a neutral atom the charge is \qquad and protons and electrons will cancel out
- Atomic mass- the mass of \qquad of an element. Can be used to find the number of (0).
- Atomic mass- atomic number $=$ \# of neutrons. ROUND TO THE NEAREST WHOLE NUMBER
- This is true because the mass of an electron is
\qquad so the mass is entirely made up of the mass of \qquad (+) and \qquad (0)

Periods

- Each \qquad row of the periodic table is called a
\qquad _.
- The atomic number, atomic mass, and the number of valence electrons all
\qquad from left to right.
- The transition metals are an exception because they have a
\qquad of valence electrons

Groups

- Each \qquad of the periodic table is called a
\qquad or family
- Each one is given a name that shows that the elements in the column have the \qquad and
\qquad the same way
- Elements of the same group have the \qquad of valence electrons (except transition metals)

