\qquad
Date: \qquad Core: \qquad

Chemical Reactions Notes

Law of conservation of mass

$>$ Mass cannot be \qquad or \qquad
$>$ This means that in a chemical reaction the number of atoms you start with is the
\qquad as the number of atoms you end with

Chemical Formulae

$>$ Chemical Formulae (plural of formula) are how we express compounds
$>$ Just as H is a symbol for hydrogen, $\mathrm{H}_{2} \mathrm{O}$ is a symbol for water
> The small numbers present in the formulae are call subscript and they indicate how many of each type of atom is in the compound or molecule
> Some other common chemical formulae....

Chemical equations

$>$ \qquad can be written out as chemical equations these are similar to mathematical equations but instead of an "=" you use an \qquad to separate the sides

Reactants and Products

> The elements or compounds that are on the LEFT side of the arrow are your \qquad the elements and compounds on the RIGHT hand side are called the \qquad

Balancing Chemical Equations

$>$ Chemical reactions always follow the law of conservation of mass...the number of atoms of each element must be \qquad
\qquad (the reactants) and
\qquad (the products)
$>$ To balance the number of atoms on each side of the equation, you must add a
\qquad in front of certain compounds or elements to show the number of each atom being used in the reaction.
> Think about distributive property in math!
\qquad
Date: \qquad Core: \qquad

Practice Balancing

Hydrogen Peroxide and Yeast:

$>1^{\text {st }}$ - make a list of the TOTAL number of each type of atom on the left and on the right Left: 2 Hydrogen Right: 2 Hydrogen

2 Oxygen
3 Oxygen
If the numbers all match then you're done, the equation is balanced! If not we'll need to do some math...

If you have different numbers of atoms

$>2^{\text {nd }}-$ If you have different numbers of \qquad of atom on the left and right do the math to make them match.
$>$ Putting \qquad in front of a compound or element in a chemical reaction means there is more than one of that element. Just like in math if you do not see a coefficient assume there is \qquad .

Find the correct coefficient

$>$ In this case if we give both hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ a coefficient of 2 and leave oxygen $\left(\mathrm{O}_{2}\right)$ with a coefficient of 1 then we end up with:

$$
>2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

Double check

$>3^{\text {rd }}$ - count the atoms on both sides again to double check that we're following the law of conservation of matter (same number of atoms on both sides)** ${ }^{* *}$ sure to distribute the coefficient!!***

Left: 4 Hydrogen
4 Oxygen

Right: 4 Hydrogen
4 Oxygen
$>$ Since we have the same number of Hydrogen and Oxygen atoms on both side the equation is \qquad !

