Name:	
Date:	Core:

Chemical Reactions Notes

Law	of	conservation of mass	
	>	Mass cannot be or	
	>	This means that in a chemical reaction the number of atoms you start with is the as the number of atoms you end with	
Che	mi	cal Formulae	
	>	Chemical Formulae (plural of formula) are how we express compounds	
	>	Just as H is a symbol for hydrogen, H₂O is a symbol for water	
	>	The small numbers present in the formulae are call subscript and they indicate how many of each type of atom is in the compound or molecule	
	>	Some other common chemical formulae	
Che	mi	cal equations	
	>	can be written out as chemical equations these are similar to mathematical equations but instead of an "=" you use an to separate the sides	
Rea	cta	nts and Products	
		The elements or compounds that are on the LEFT side of the arrow are your the elements and compounds on the RIGHT hand side are called the	
Bala	anc	ing Chemical Equations	
		Chemical reactions always follow the law of conservation of massthe number of atoms of each element must be (the reactants) and (the products)	
	_	To balance the number of atoms on each side of the equation, you must add a in front of certain compounds or elements to show the number of each atom being used in the reaction.	
		Think about distributive property in math!	

Name:	
Date:	Core:

Practice Balancing

Hydrogen Peroxide and Yeast:

> 1st – make a list of the TOTAL number of each type of atom on the left and on the right

Left: 2 Hydrogen Right: 2 Hydrogen

2 Oxygen 3 Oxygen

If the numbers all match then you're done, the equation is balanced! If not we'll need to do some math...

If you have different numbers of atoms

> 2nd- If you have **different numbers of** ______**of atom** on the left and right do the math to make them match.

Putting ______ in front of a compound or element in a chemical reaction means there is more than one of that element. Just like in math if you do not see a **coefficient** assume there is _____.

Find the correct coefficient

In this case if we give both hydrogen peroxide (H_2O_2) and water (H_2O) a coefficient of 2 and leave oxygen (O_2) with a coefficient of 1 then we end up with:

$$\triangleright$$
 2H₂O₂ \rightarrow 2H₂O + O₂

Double check

> 3rd- count the atoms on both sides **again** to double check that we're following the law of conservation of matter (same number of atoms on both sides)****be sure to distribute the coefficient!!*****

Left: 4 Hydrogen Right: 4 Hydrogen

4 Oxygen 4 Oxygen

Since we have the same number of Hydrogen and Oxygen atoms on both side the equation is ______!