CHEMICAL
 REACTIONS

LAW OF CONSERVATION OF MASS
 > Mass can not be CREATED or DESTROYED

$>$ This means that in a chemical reaction the number of atoms you start with is the SAME as the number of atoms you end with

CHEMICAL FORMULAE

$>$ Chemical Formulae (plural of formula) are how we express compounds
$>$ Just as H is a symbol for hydrogen, $\mathrm{H}_{2} \mathrm{O}$ is a symbol for water
$>$ The small numbers present in the formulae are call subscript and they indicate how many of each type of atom is in the compound or molecule
$>$ Some other common chemical formulae....

$$
>\mathrm{CO}_{2}>\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad>\mathrm{NaCl}
$$

CHEMICAL EQUATIONS

$>$ Chemical reactions can be written out as chemical equations these are similar to mathematical equations but instead of an "=" you use an arrow to separate the sides
 $2 \mathrm{H}+\mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{O}$

REACTANTS AND PRODUCTS

$>$ The elements or compounds that are on the LEFT side of the arrow are your reactants the elements and compounds on the RIGHT hand side are called the products

Reactants
$2 \mathrm{H}+\mathrm{O}$

BALANCING CHEMICAL EQUATIONS

$>$ Chemical reactions always follow the law of conservation of mass...the number of atoms of each element must be equal before the reaction (the reactants) and after the reaction (the products)
$>$ To balance the number of atoms on each side of the equation, you must add a coefficient in front of certain compounds or elements to show the number of each atom being used in the reaction.
$>$ Think about distributive property in math!

PRACTICE BALANCING

Hydrogen Peroxide and Yeast:

$>1^{\text {st }}-$ make a list of the TOTAL number of each type of atom on the left and on the right

$$
\begin{array}{cr}
\text { Left: } 2 \text { Hydrogen } & \text { Right: } 2 \text { Hydrogen } \\
2 \text { Oxygen } & 3 \text { Oxygen }
\end{array}
$$

If the numbers all match then you're done, the equation is balanced! If not we'll need to do some math...

IF YOU HAVE DIFFERENT NUMBERS OF ATOMS

Hydrogen Peroxide and Yeast:

$>2^{\text {nd }}$ - If you have different numbers of any type of atom on the left and right do the math to make them match.
$>$ Putting coefficients in front of a compound or element in a chemical reaction means there is more than one of that element. Just like in math if you do not see a coefficient assume there is only one.

FIND THE CORRECT COEFFICIENT

Hydrogen Peroxide and Yeast:

$$
\longrightarrow \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{O}_{2}
$$

$>$ In this case if we give both hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ a coefficient of 2 and leave oxygen $\left(\mathrm{O}_{2}\right)$ with a coefficient of 1 then we end up with:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

DOUBLE CHECK

$2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

$>3^{\text {rd }}$ - count the atoms on both sides again to double check that we're following the law of conservation of matter (same number of atoms on both sides)** be sure to distribute the coefficient!!***
Left: 4 Hydrogen 4 Oxygen
Right: 4 Hydrogen 4 Oxygen
$>$ Since we have the same number of Hydrogen and Oxygen atoms on both side the equation is balanced!

